Researchers from the University of British Columbia, under the leadership of Professor Nemkumar Banthia, developed a brand-new type of concrete, which can be sprayed onto walls, and will successfully protect buildings from being damaged in the event of even major quakes. This is possible thanks to a fibre-reinforced design which allows the concrete to bend, rather than fracture when it is violently shaken.

Known as eco-friendly ductile cementitious composite (EDCC), the concrete contains polymer-based fibres. These give it a strong-yet-malleable quality not unlike steel, which tends to flex under pressure instead of crumbling like traditional concrete.

“By replacing nearly 70 percent of cement with flyash, an industrial byproduct, we can reduce the amount of cement used,” said Banthia.  “This is quite an urgent requirement as one tonne of cement production releases almost a tonne of carbon dioxide into the atmosphere, and the cement industry produces close to seven percent of global greenhouse gas emissions.”

“This UBC-developed technology has far-reaching impact and could save the lives of not only British Columbians but citizens throughout the world,” said Advanced Education, Skills and Training Minister Melanie Mark. “The earthquake-resistant concrete is a great example of how applied research at our public universities is developing the next generation of agents of change. The innovation and entrepreneurship being advanced at all of our post-secondary institutions is leading to cutting-edge technologies and helping to create a dynamic, modern B.C. economy that benefits all of us.”

The research was funded by the UBC-hosted Canada-India Research Centre of Excellence IC-IMPACTS, which promotes research collaboration between Canada and India. IC-IMPACTS will make EDCC available to retrofit a school in Roorkee in Uttarakhand, a highly seismic area in northern India.

About Team ACSES Engineers

ACSES Engineers is a specialist structural, civil and geotechnical engineering consulting firm with extensive experience in a broad range of project scopes.